เซต ใช้แทนกลุ่มของคน,สัตว์,สิ่งของ หรือสิ่งที่เราสนใจ เราใช้เครื่องหมายปีกกา“{ } ”
แสดงความเป็นเซต และสิ่งที่อยู่ภายในปีกกา เราเรียกสมาชิกของเซต
เซตที่เท่ากัน
เซต 2 เซตจะเท่ากันก็ต่อเมื่อจำนวนสมาชิกและสมาชิกของทั้ง 2 เซต เหมือนกันทุกตัว
เช่น A={1,2,3} B={1,2,3} จะได้ A=B
เซตที่เทียบเท่ากัน
เซต 2 เซตจะเทียบเท่ากันก็ต่อเมื่อ จำนวนสมาชิกของทั้ง 2 เซต เท่ากัน
เช่น A={a,b,c} , B={1,2,3}
จำนวนสมาชิกของ A= จำนวนสมาชิกของ B= 3 ตัว
n( A ) = n ( B ) = 3
ดังนั้น A เทียบเท่ากับเซต B
เซตจำกัด
เซตใดๆเป็นเซตจำกัดก็ต่อเมื่อ เรารู้จำนวนสมาชิกของเซตนั้นแน่นอน
เช่น A={1,2,3,…,100} จะได้ n(A)=100 A เป็นเซตจำกัด
เซตอนันต์
เซตใดๆ จะเป็นเซตอนันต์ ก็ต่อเมื่อ จำนวนสมาชิกของเซตนั้นมากจนหาค่าไม่ได้
เช่น A={1,2,3,…} จะได้ A เป็นเซตอนันต์
เซตว่าง
เซตว่าง คือ เซตที่ไม่มีสมาชิกอยู่เลย เช่น { } = 0 อ่านเพิ่มเติม
วันอังคารที่ 25 สิงหาคม พ.ศ. 2558
บทที่ 2 การให้เหตุผล
การให้เหตุผลแบบอุปนัย เป็นการให้เหตุผลโดยอาศัยข้อสังเกตหรือผลการทดลองจากหลาย ๆ
ตัวอย่าง มาสรุปเป็นข้อตกลง หรือข้อคาดเดาทั่วไป หรือคำพยากรณ์
ซึ่งจะเห็นว่าการจะนำเอาข้อสังเกต
หรือผลการทดลองจากบางหน่วยมาสนับสนุนให้ได้ข้อตกลง หรือ
ข้อความทั่วไปซึ่งกินความถึงทุกหน่วย ย่อมไม่สมเหตุสมผล
เพราะเป็นการอนุมานเกินสิ่งที่กำหนดให้ ซึ่งหมายความว่า
การให้เหตุผลแบบอุปนัยจะต้องมีกฎของความสมเหตุสมผลเฉพาะของตนเอง นั่นคือ
จะต้องมีข้อสังเกต หรือผลการทดลอง หรือ มีประสบการณ์ที่มากมายพอที่จะปักใจเชื่อได้
แต่ก็ยังไม่สามารถแน่ใจในผลสรุปได้เต็มที่ เหมือนกับการให้เหตุผลแบบนิรนัย
ดังนั้นจึงกล่าวได้ว่าการให้เหตุผลแบบนิรนัยจะให้ความแน่นอน
แต่การให้เหตุผลแบบอุปนัย จะให้ความน่าจะเป็น
ตัวอย่างการให้เหตุผลแบบอุปนัย เช่น เราเคยเห็นว่ามีปลาจำนวนมากที่ออกลูกเป็นไข่เราจึงอนุมานว่า "ปลาทุกชนิดออกลูกเป็นไข่" ซึ่งกรณีนี้ถือว่าไม่สมเหตุสมผล ทั้งนี้เพราะ ข้อสังเกต หรือ ตัวอย่างที่พบยังไม่มากพอที่จะสรุป เพราะโดยข้อเท็จจริงแล้วมีปลาบางชนิดที่ออกลูกเป็นตัว เช่น ปลาหางนกยูง เป็นต้น
โดยทั่วไปการให้เหตุผลแบบอุปนัยนี้ มักนิยมใช้ในการศึกษาค้นคว้าคุณสมบัติต่าง ๆ ทางด้านวิทยาศาสตร์ เช่น ข้อสรุปว่า สารสกัดจากสะเดาสามารถใช้เป็นยากำจัดศัตรูพืชได้ ซึ่งข้อสรุปดังกล่าวมาจากการทำการทดลอง ซ้ำ ๆ กันหลาย ๆ ครั้ง แล้วได้ผลการทดลองที่ตรงกันหรือในทางคณิตศาสตร์จะใช้การให้เหตุผลแบบอุปนัย ในการสร้างสัจพจน์ เช่น เมื่อเราทดลองลากเส้นตรงสองเส้นให้ตัดกัน เราก็พบว่าเส้นตรงสองเส้นจะตัดกันเพียงจุด ๆ เดียวเท่านั้น ไม่ว่าจะทดลองลากกี่ครั้งก็ตาม เราก็อนุมานว่า "เส้นตรงสองเส้นตัดกันเพียงจุดจุดเดียว"
2. การให้เหตุผลแบบนิรนัย
เป็นการนำความรู้พื้นฐานที่อาจเป็นความเชื่อ ข้อตกลง กฏ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อนและยอมรับว่าเป็นจริง เพื่อหาเหตุผลนำไปสู่ข้อสรุป อ่านเพิ่มเติม
ตัวอย่างการให้เหตุผลแบบอุปนัย เช่น เราเคยเห็นว่ามีปลาจำนวนมากที่ออกลูกเป็นไข่เราจึงอนุมานว่า "ปลาทุกชนิดออกลูกเป็นไข่" ซึ่งกรณีนี้ถือว่าไม่สมเหตุสมผล ทั้งนี้เพราะ ข้อสังเกต หรือ ตัวอย่างที่พบยังไม่มากพอที่จะสรุป เพราะโดยข้อเท็จจริงแล้วมีปลาบางชนิดที่ออกลูกเป็นตัว เช่น ปลาหางนกยูง เป็นต้น
โดยทั่วไปการให้เหตุผลแบบอุปนัยนี้ มักนิยมใช้ในการศึกษาค้นคว้าคุณสมบัติต่าง ๆ ทางด้านวิทยาศาสตร์ เช่น ข้อสรุปว่า สารสกัดจากสะเดาสามารถใช้เป็นยากำจัดศัตรูพืชได้ ซึ่งข้อสรุปดังกล่าวมาจากการทำการทดลอง ซ้ำ ๆ กันหลาย ๆ ครั้ง แล้วได้ผลการทดลองที่ตรงกันหรือในทางคณิตศาสตร์จะใช้การให้เหตุผลแบบอุปนัย ในการสร้างสัจพจน์ เช่น เมื่อเราทดลองลากเส้นตรงสองเส้นให้ตัดกัน เราก็พบว่าเส้นตรงสองเส้นจะตัดกันเพียงจุด ๆ เดียวเท่านั้น ไม่ว่าจะทดลองลากกี่ครั้งก็ตาม เราก็อนุมานว่า "เส้นตรงสองเส้นตัดกันเพียงจุดจุดเดียว"
2. การให้เหตุผลแบบนิรนัย
เป็นการนำความรู้พื้นฐานที่อาจเป็นความเชื่อ ข้อตกลง กฏ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อนและยอมรับว่าเป็นจริง เพื่อหาเหตุผลนำไปสู่ข้อสรุป อ่านเพิ่มเติม
บทที่ 3 จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย I
I = {1,2,3…}
- เซตของจำนวนเต็มลบ เขียนแทนด้วย I
- เซตของจำนวนเต็ม เขียนแทนด้วย I
I = { …,-3,-2,-1,0,1,2,3…}
- เซตของจำนวนตรรกยะ : เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน โดยที่ a,b เป็นจำนวนเต็ม และ b = 0
- เซตของจำนวนอตรรกยะ : จำนวนที่ไม่ใช่จำนวนตรรยะ ซึ่งไม่สมารถเขียนในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ แต่สามารถเขียนได้ในรูปทศนิยมไม่ซ้ำ และสามารถกำหนดค่าโดยประมาณได้
ตัวอย่างจำนวนอตรรกยะ
= 1.4142135… มีค่าประมาณ 1.414
= 1.4422495… มีค่าประมาณ 1.442
= -0.8660254… มีค่าประมาณ -0.866
= 3.14159265… มีค่าประมาณ 3.1416 อ่านเพิ่มเติม
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย I
I = {1,2,3…}
- เซตของจำนวนเต็มลบ เขียนแทนด้วย I
- เซตของจำนวนเต็ม เขียนแทนด้วย I
I = { …,-3,-2,-1,0,1,2,3…}
- เซตของจำนวนตรรกยะ : เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน โดยที่ a,b เป็นจำนวนเต็ม และ b = 0
- เซตของจำนวนอตรรกยะ : จำนวนที่ไม่ใช่จำนวนตรรยะ ซึ่งไม่สมารถเขียนในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ แต่สามารถเขียนได้ในรูปทศนิยมไม่ซ้ำ และสามารถกำหนดค่าโดยประมาณได้
ตัวอย่างจำนวนอตรรกยะ
= 1.4142135… มีค่าประมาณ 1.414
= 1.4422495… มีค่าประมาณ 1.442
= -0.8660254… มีค่าประมาณ -0.866
= 3.14159265… มีค่าประมาณ 3.1416 อ่านเพิ่มเติม
บทที่ 4 ความสัมพันธ์และฟังก์ชัน
ในชีวิตประจำวันจะพบสิ่งที่มีความเกี่ยวข้องกันอยู่เสมอ เช่น สินค้ากับราคาสินค้าคนไทยทุกคนจะต้องมีเลขประจำตัวประชาชนเป็นของตนเอง ตัวอย่างที่กล่าวมาเป็นตัวอย่างที่แสดงความสัมพันธ์ของสิ่งสองสิ่งที่มาเกี่ยวข้องกันภายใต้กฎเกณฑ์อย่างใดอย่างหนึ่ง สำหรับในวิชาคณิตศาสตร์มีสิ่งที่แสดงความสัมพันธ์ดังตัวอย่างต่อไปนี้
พื้นที่ของรูปสามเหลี่ยมใดๆ เท่ากับ ครึ่งหนึ่งของผลคูณของความยาวของฐานและความสูงของรูปสามเหลี่ยม 0น้อยกว่า หนึ่ง
{1,2} ไม่เท่ากับ {12}
ถ้าจะจับคู่ระหว่างสิ่งสองสิ่งที่มีความสัมพันธ์กัน เช่น จับคู่ระหว่างจำนวนนับ a และ
ถ้าจะจับคู่ระหว่างสิ่งสองสิ่งที่มีความสัมพันธ์กัน เช่น จับคู่ระหว่างจำนวนนับ a และ
ซึ่งเป็นอินเวอร์สการคูณของ a แล้วเขียนในวงเล็บ เช่น 2, 3, 4, 5, สิ่งที่ได้เหล่านี้เรียกว่า คู่อันดับ แต่ละคู่อันดับประกอบด้วยสมาชิกตัวหน้าและสมาชิกตัวหลัง จากตัวอย่าง 2,3,4 และ 5 เป็นสมาชิกตัวหน้า และ ,, และ เป็นสมาชิกตัวหลัง ถ้าสลับที่สมาชิกตัวหน้าและตัวหลัง เช่น จาก 2, เป็น ,2 สิ่งที่ได้ก็จะผิดความหมายเดิมที่กำหนดไว้ ในวิชาคณิตศาสตร์จะเขียนคู่อันดับในรูป (a,b) โดยที่ a เป็นสมาชิกตัวหน้าและ b เป็นสมาชิกตัวหลัง คู่อันดับสองคู่อันดับใดๆ จะเท่ากันเมื่อสมาชิกตัวหน้าเท่ากันและสมาชิกตัวหลังเท่ากัน หรือ (a,b) = (c,d) เมื่อ a = c และ b = d
ให้ A = {1,2,3} และ B = {a , b}
เขียนคู่อันดับโดยให้สมาชิกตัวหน้าเป็นสมาชิกของเซต A และสมาชิกตัวหลังเป็นสมาชิกของเซต B แล้วจะได้คู่อันดับทั้งหมดดังนี้
(1,a) , (1,b) , (2,a) , (2,b) , (3,a) , (3,b)
และเซตของคู่อันดับทั้งหมดคือ
{(1,a) , (1,b) , (2,a) , (2,b) , (3,a), (3,b)}
เรียกเซตนี้ว่า ผลคูณคาร์ทีเซียนของเซต A และ B เขียนแทนด้วย A x B อ่านว่า “เอคูณบี”
จากตัวอย่างที่กล่าวมา A x B = {(1,a) , (1,b) , (2,a) , (2,b) , (3,a), (3,b)} อ่านเพิ่มเติม
สมัครสมาชิก:
บทความ (Atom)